
FLAT PANEL ELECTROLUMINESCENT LAMPS

FOR FLAT PANEL LIGHTING, EL LAMPS OFFER:

- UNIFORM BRIGHTNESS & COLOR An EL lamp provides an even color and light intensity output over the entire surface of the light. No HOT spots or uneven lighting at the edges!
- LOW POWER CONSUMPTION EL lamps draw only a fraction of the electrical power of an incandescent lamp. The efficiency of an EL lamp means more usable light output for the watts of power consumed.

• "COLD" LIGHT SOURCE

No heat is generated by the light producing mechanisms of an EL lamp. This means they are cool to the touch. No more worries about heat management.

• THIN PROFILE

EL lamps are extremely thin, making them perfect for placing behind graphic overlays or membrane switches. They are typically .010" thick.

• CUSTOMIZABLE LIT AREA

An EL lamp can be created in a pattern that matches your application. Holes can be made for gauges or screw holes. A single lamp can replace a multitude of incandescent bulbs and wiring.

• EASE OF ASSEMBLY

EL lamps are typically supplied with adhesive so you just peel the release liner and stick them in place. No special mounting hardware is required!

sisting of a phosphor powder sandwiched between electrically conducting layers (plates). At least one he plates must be transparent to allow the light to ape. When the EL lamp is placed under an rnating electric field, electrons are excited to higher rgy states. When these electrons return to their ginal state, energy is released in the form of emitted ble light. The intensity of the light increases with	ENT LAMPS
described by the French physicist, Georges Destriau, in 1936. In the 1980s advancements in phosphor development and packaging technology made EL viable for commercial applications. Recent advancements have greatly improved phosphor stability and insured the long life of an	
Electroluminescence was first described by the French physicist, Georges Destriau, in 1936. In the 1980s advancements in phosphor development and packaging technology made EL viable for commercial applications. Recent advancements have greatly improved phosphor stability and insured the long life of an	sisting of a phosphor powder sandwiched between electrically conducting layers (plates). At least one he plates must be transparent to allow the light to ape. When the EL lamp is placed under an rnating electric field, electrons are excited to higher rgy states. When these electrons return to their ginal state, energy is released in the form of emitted ble light. The intensity of the light increases with
	described by the French physicist, Georges Destriau, in 1936. In the 1980s advancements in phosphor development and packaging technology made EL viable for commercial applications. Recent advancements have greatly improved phosphor stability and insured the long life of an